725 research outputs found

    Retardation in Children of High Intelligence

    Get PDF
    Abstract Not Provided

    Navigating Educational and Behavioral Services: What Parents of Children With ASD Need to Know

    Get PDF
    Navigating service systems can be difficult. Parents are often unaware of where educational services end and where behavioral health services begin. This interactive panel will aid in navigating the complex matrix of school, BHRS, STS, outpatient, and psychiatric services for school-aged children with an ASD. It will teach parents how to create a collaborative team which aids in providing consistency in all environments. Additionally, parents will gain information about effective advocacy for services in the school, home, and community. The discussion will provide an overview of considerations family need in order to identify supports and advocate for their children

    Weighted LDA techniques for I-vector based speaker verification

    Get PDF
    This paper introduces the Weighted Linear Discriminant Analysis (WLDA) technique, based upon the weighted pairwise Fisher criterion, for the purposes of improving i-vector speaker verification in the presence of high intersession variability. By taking advantage of the speaker discriminative information that is available in the distances between pairs of speakers clustered in the development i-vector space, the WLDA technique is shown to provide an improvement in speaker verification performance over traditional Linear Discriminant Analysis (LDA) approaches. A similar approach is also taken to extend the recently developed Source Normalised LDA (SNLDA) into Weighted SNLDA (WSNLDA) which, similarly, shows an improvement in speaker verification performance in both matched and mismatched enrolment/verification conditions. Based upon the results presented within this paper using the NIST 2008 Speaker Recognition Evaluation dataset, we believe that both WLDA and WSNLDA are viable as replacement techniques to improve the performance of LDA and SNLDA-based i-vector speaker verification

    A Speaker Verification Backend with Robust Performance across Conditions

    Full text link
    In this paper, we address the problem of speaker verification in conditions unseen or unknown during development. A standard method for speaker verification consists of extracting speaker embeddings with a deep neural network and processing them through a backend composed of probabilistic linear discriminant analysis (PLDA) and global logistic regression score calibration. This method is known to result in systems that work poorly on conditions different from those used to train the calibration model. We propose to modify the standard backend, introducing an adaptive calibrator that uses duration and other automatically extracted side-information to adapt to the conditions of the inputs. The backend is trained discriminatively to optimize binary cross-entropy. When trained on a number of diverse datasets that are labeled only with respect to speaker, the proposed backend consistently and, in some cases, dramatically improves calibration, compared to the standard PLDA approach, on a number of held-out datasets, some of which are markedly different from the training data. Discrimination performance is also consistently improved. We show that joint training of the PLDA and the adaptive calibrator is essential -- the same benefits cannot be achieved when freezing PLDA and fine-tuning the calibrator. To our knowledge, the results in this paper are the first evidence in the literature that it is possible to develop a speaker verification system with robust out-of-the-box performance on a large variety of conditions

    Toward Fail-Safe Speaker Recognition: Trial-Based Calibration with a Reject Option

    Get PDF
    The output scores of most of the speaker recognition systems are not directly interpretable as stand-alone values. For this reason, a calibration step is usually performed on the scores to convert them into proper likelihood ratios, which have a clear probabilistic interpretation. The standard calibration approach transforms the system scores using a linear function trained using data selected to closely match the evaluation conditions. This selection, though, is not feasible when the evaluation conditions are unknown. In previous work, we proposed a calibration approach for this scenario called trial-based calibration (TBC). TBC trains a separate calibration model for each test trial using data that is dynamically selected from a candidate training set to match the conditions of the trial. In this work, we extend the TBC method, proposing: 1) a new similarity metric for selecting training data that result in significant gains over the one proposed in the original work; 2) a new option that enables the system to reject a trial when not enough matched data are available for training the calibration model; and 3) the use of regularization to improve the robustness of the calibration models trained for each trial. We test the proposed algorithms on a development set composed of several conditions and on the Federal Bureau of Investigation multi-condition speaker recognition dataset, and we demonstrate that the proposed approach reduces calibration loss to values close to 0 for most of the conditions when matched calibration data are available for selection, and that it can reject most of the trials for which relevant calibration data are unavailable.Fil: Ferrer, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; ArgentinaFil: Nandwana, Mahesh Kumar. No especifíca;Fil: McLaren, Mitchell. No especifíca;Fil: Castan, Diego. No especifíca;Fil: Lawson, Aaron. No especifíca

    Associations and propositions: the case for a dual-process account of learning in humans

    Get PDF
    Copyright © 2013 Elsevier. NOTICE: This is the author’s version of a work accepted for publication by Elsevier. Changes resulting from the publishing process, including peer review, editing, corrections, structural formatting and other quality control mechanisms, may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Neurobiology of Learning and Memory, 2014, vol. 108, pp. 185 – 195 DOI: 10.1016/j.nlm.2013.09.014We review evidence that supports the conclusion that people can and do learn in two distinct ways - one associative, the other propositional. No one disputes that we solve problems by testing hypotheses and inducing underlying rules, so the issue amounts to deciding whether there is evidence that we (and other animals) also rely on a simpler, associative system, that detects the frequency of occurrence of different events in our environment and the contingencies between them. There is neuroscientific evidence that associative learning occurs in at least some animals (e.g., Aplysia californica), so it must be the case that associative learning has evolved. Since both associative and propositional theories can in principle account for many instances of successful learning, the problem is then to show that there are at least some cases where the two classes of theory predict different outcomes. We offer a demonstration of cue competition effects in humans under incidental conditions as evidence against the argument that all such effects are based on cognitive inference. The latter supposition would imply that if the necessary information is unavailable to inference then no cue competition should occur. We then discuss the case of unblocking by reinforcer omission, where associative theory predicts an irrational solution to the problem, and consider the phenomenon of the Perruchet effect, in which conscious expectancy and conditioned response dissociate. Further discussion makes use of evidence that people will sometimes provide one solution to a problem when it is presented to them in summary form, and another when they are presented in rapid succession with trial-by trial information. We also demonstrate that people trained on a discrimination may show a peak shift (predicted by associative theory), but given the time and opportunity to detect the relationships between S+ and S-, show rule-based behavior instead. Finally, we conclude by presenting evidence that research on individual differences suggests that variation in intelligence and explicit problem solving ability are quite unrelated to variation in implicit (associative) learning, and briefly consider the computational implications of our argument, by asking how both associative and propositional processes can be accommodated within a single framework for cognition.ESR
    corecore